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Abstract— High frequency (HF) interference in surface wave
over-the-horizon (OTH) radars typically exhibits a time-varying
or non-stationary spatial structure. Adaptive beamformers that
update the spatial filtering weight vector within the coherent
processing interval (CPI) are likely to suppress such interference
most effectively, but the intra-CPI antenna pattern fluctuations
result in temporal de-correlation of the clutter which severely
degrades sub-clutter visibility after Doppler processing. A robust
adaptive beamformer that effectively suppresses non-stationary
interference without degrading sub-clutter visibility is proposed.
The new algorithm is computationally efficient and suitable
for practical implementation. Its operational performance is
evaluated using experimental data recorded by the Iluka HF
surface wave (HFSW) OTH radar, located near Darwin in far
north Australia.

I. INTRODUCTION

HFSW radars operate by normal line-of-sight propagation
in addition to surface wave propagation [1]. The latter enables
surface and airborne targets to be detected at ranges of up to
200-300 kilometres over sea water [2], [3]. Offshore targets
of emerging interest include “sea-skimming” missiles [4], and
small “go-fast” boats used for smuggling and drug trafficking
[5], [6]. Doppler processing can usually resolve high velocity
targets from the most powerful (first-order) ocean clutter
returns. This often allows fast-moving targets with small
radar cross section (RCS) to compete for detection against
interference-plus-noise.

In the user-congested HF spectrum, unoccupied frequency
channels of sufficient bandwidth (50-100 kHz) are at times
extremely difficult to find, particularly in the lower HF band
(5-15 MHz) or at night time when the ionosphere is known
to propagate interference sources very long distances. The
ionospheric or skywave propagation is detrimental to HFSW
radar because it effectively increases the number of interferers
at the radar site, making it sometimes impossible to find a
“silent” frequency channel to operate the radar [7], [8]. In such
situations, the signal-to-interference plus noise ratio (SINR)
can be enhanced by using adaptive beamforming to cancel
directional interference from natural and man-made sources.

Radio frequency interference (RFI) typically exhibits a time-
varying spatial structure statistically characterised by a non-
stationary spatial covariance matrix over the CPI. This physical
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enon may arise due to the dynamic properties of the
heric layer(s) propagating interference [9], the variation

etry between radar receiver and interference source(s)
r the impulsive nature of the source(s) [11]. Experi-
investigations confirm that RFI spatial non-stationarity
typical OTH radar CPI has a pronounced impact on
e beamformer performance and must be taken into
ted to ensure effective HF interference suppression, see
] for example. The long dwell times required by HFSW
(CPIs of 30-120 seconds) means that standard adaptive
rming implementations based on time-invariant array
vectors often fail to significantly improve the SINR.

is reason, such systems are highly susceptible to the
atial non-stationarity phenomenon.
alternative is to update the adaptive beamforming

s within the CPI. Time-varying weights are likely to
ore effective interference cancellation while providing

onless (unity gain) response to target signals incident
he radar look direction, but the beamformed clutter
nent may suffer a severe loss of temporal coherence as
ceived over the entire adaptive antenna pattern which
n-stationary interference) may be required to fluctuate
the CPI. This degradation manifests itself as a smearing
lutter energy across the Doppler (velocity) search space
e potential to obscure the presence of useful signals.
propose a robust adaptive beamformer that effectively
sses non-stationary interference without significantly
ing sub-clutter visibility. A desirable property of the
hm is that its computational cost is much lower than the
stic Constraints (SC) method previously used to address
blem [14]. Apart from its computational efficiency, the

ethod is also more robust to estimation errors that can
ulate with each update and degrade Doppler processing

ance. Both qualities make it an attractive candidate for
al implementation in operational HFSW radar systems.
ray data model is described in section 2. Section 3
es the proposed algorithm. Section 4 presents and dis-
the experimental results that compare the performance
proposed algorithm with the conventional beamformer,
ple matrix inverse (SMI) technique and the SC method.
sions are given in section 5.
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II. DATA MODEL

Let us define x(t) as the complex N -dimensional antenna
array snapshot vector received at a particular range cell in
a CPI composed of t = 0, 1, . . . , P − 1 pulses. In general,
x(t) contains an additive mixture of radar clutter c(t), external
interference i(t), internal noise n(t) and potentially a target
signal s(t):

x(t) = s(t) + c(t) + i(t) + n(t) (1)

A far-field target echo received by a narrowband uniform linear
array (ULA) can be expressed as s(t) = g(t)v(θ), where the
scalar waveform g(t) represents the target’s temporal signature
and v(θ) is the spatial response (steering vector) for an
angle-of-arrival θ that coincides with the radar look direction.
An ideal target of constant reflectivity and radial velocity
throughout the CPI has a signature g(t) = µej(2πfdt+φ), where
µejφ is the complex amplitude and fd is the Doppler frequency
shift normalised by the pulse repetition frequency (PRF).
Under these conditions, the simplest target signal model may
be defined as

s(t) = µej(2πfdt+φ)[1, ej2π d
λ sin θ, . . . , e2π(N−1) d

λ sin θ]T (2)

where d is the spacing between adjacent antenna elements,
λ is the operating wavelength and (·)T denotes transpose.
The internal receiver noise is assumed to be uncorrelated with
itself over different receivers and pulses. It is spatially and
temporally white with the following correlation properties:

E{n(r)nH(s)} = δrs (3)

where σ2
n is the noise power, δrs is the Kronecker delta, E{·}

is the statistical expectation and H denotes the Hermitian
transpose.

A. External Interference

Let R(t) = E{(i(t) + n(t))(i(t) + n(t))H} be the
interference-plus-noise spatial covariance matrix at time t,
the variation across different pulse repetition intervals (PRIs)
arises only from the spatial non-stationarity of the external
interference i(t), that is,

R(t) = E{i(t)iH(t)} + σ2
nI (4)

As R(t) is unknown in practice, it is often replaced by
the sample spatial covariance matrix R̂(t) estimated using
secondary (clutter-free) snapshots jk(t) = ik(t) + nk(t).
Usually, secondary data is extracted from a limited number
of K clutter-free range cells available at the tth pulse. Using
these snapshots, the sample estimate of the interference-plus-
noise covariance matrix is given by

R̂(t) =
1
K

K∑

k=1

jk(t)jHk (t) (5)

In a bistatic HFSW radar, secondary data may be extracted
from range cells prior to the reception of the direct wave. In
the monostatic case, the high attenuation of the surface wave
with distance (more severe than the inverse square law) allows
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amplitu
tter-free cells to be obtained at sufficiently long range.
ise the clutter must be pre-filtered [15], [16], [17].
e CPI is partitioned into M sub-CPI or data batches
ing Q pulses (M = P/Q), the adaptive beamforming
vectors wm for m = 1, . . . , M can be updated

atch-to-batch. Selection of batch length Q represents
romise between fast updates to counteract interference
tionarity and slow updates to increase secondary data
support. Recall that the condition KQ ≥ 2N is

d to provide satisfactory performance for the SMI
ue [24]. The adaptive weights wm are derived from
ociated integrated sample covariance matrices Rm,

Rm =
1
Q

Qm−1∑

t=Q(m−1)

R̂(t) (6)

plied to beamform the test range cell in the current
y(t) = wH

mx(t) for t = Q(m − 1), . . . , Qm − 1.
milarity between the matrices R(t) being integrated
s on the batch length Q and the degree of interference
non-stationarity. In general, it is found that interference
onts reflected by the ionosphere fluctuate in a correlated
r with respect to time [9], [12]. In simple terms, this
that the matrices R(t) are likely to be similar over a
r of adjacent PRI, but become progressively different
structure of the interference wavefronts evolve in time
ly varying appreciably in form between the endpoints
CPI). A parametric interference model that quantifies
ace-time behaviour was experimentally verified in [9],
8], [19] using different data sets.

face Clutter

dominant sea clutter contribution is produced by first-
catter from specific spectral components of the ocean

eld. These surface-height components are called Bragg
Their wavelength Λ is exactly half the radio wavelength
they move directly towards and away from the radar.
er of depth h > Λ/2, the Bragg wave trains move
dial velocity vg = ±√

gΛ/2π, where Λ = λ/2 and
celeration due to gravity. This imposes a Doppler shift
±√

g/λπ on the first-order clutter backscattered at
incidence [20]. When the Bragg wave trains propagate

h a surface current with mean radial velocity vs, an
nal Doppler shift fs = 2vs/λ results for both the
e and recede Bragg wave spectral returns.
ri(t) be the first-order ocean clutter received at the
ce antenna element in the array due to a scattering
” defined by the size of the (unnamed) test range cell
narrow-beam at azimuth θi. In accordance with [21],
ntribution to the total clutter return can be modelled in
e-domain as

= Aie
j{2π(fs+fb)t+φi(t)} + Ãie

j{2π(fs−fb)t+φi(t)} (7)

Ai and Ãi are the advance and recede first-order clutter
des respectively. These amplitudes are proportional to



the ocean directional wave-height spectrum at the Bragg wave-
vectors (generally two orders of magnitude higher than the
surrounding clutter continuum due to higher order scatter).
As the primary concern is not to destroy the natural temporal
coherence of the first-order clutter, we focus on modelling
these dominant returns and omit the much weaker higher
order scatter. In practice, the surface-current through the radar
footprint may have a non-uniform velocity component with
different dynamic behaviour from one scattering patch to
another. Surface-current turbulence over the data collection
period imposes a phase modulation φi(t) on the Bragg wave
spectral components, a mechanism that broadens the approach
and recede Bragg lines into identical shapes [22].

The overall first-order ocean clutter received at different
antenna elements is the vector addition of the narrow-beam
returns from I azimuth cells subtending the intersection of the
transmit and receive beampatterns: c(t) =

∑I
i=1 ri(t)v(θi). If

a deterministic ground clutter component cg with zero Hertz
Doppler shift is also included, ignoring the movement of
ground scatters and non-ideal systems effects, it follows that
the clutter snapshots received by the array can be modelled as

c(t) = cg + ca(t)ej2π(fs+fb)t + cr(t)ej2π(fs−fb)t (8)

where ca(t) =
∑I

i=0 Aie
j2πφi(t)v(θi) is the modulation on

the advance wave and cr(t) =
∑I

i=0 Ãie
j2πφi(t)v(θi) is that

for the recede wave. The instantaneous Bragg frequencies
change relatively slowly and may be regarded almost constant
over a sufficiently short sub-CPI. The assumption of “frozen”
Bragg frequencies over Q consecutive PRI allows the clutter
to be represented as superposition of complex sinusoids with
fixed frequencies over each sub-CPI. Such a model has previ-
ously been adopted to parametrically estimate surface currents
[21] and to cancel clutter over CPI lengths shorter than 3
seconds [23].

In mathematical terms, we let ca(t) = ca(τm)ej2πδfmt and
cr(t) = cr(τm)ej2πδfmt for t = Q(m−1), . . . , Qm−1 where
τm = Q(m−1) and δfm is the slowly changing shift in Bragg
wave instantaneous frequency that causes incoherent integra-
tion of the first-order ocean clutter over the CPI. By defining
the matrix Am = [cg , ca(τm), cr(τm)] and the vector p(t) =
[1, ej2π(fm+fb)t, ej2π(fm−fb)t]T for fm = fs + δfm, the first
order multi-channel clutter realisation is locally represented by
a dynamic spatial subspace model with an instantaneous rank
of L = 3 over each sub-CPI.

c(t) = Amp(t) , t = Q(m − 1), . . . , Qm − 1 (9)

In general, the minimum value of L is set by the number of
dominant components resolved in the clutter Doppler spectra.
For example, L = 3 corresponds to two resolved Bragg lines
and ground clutter. Values of L > 3 may be adopted to account
for subspace leakage caused by the continuous nature of the
actual phase modulation process or to account for some of the
second-order clutter. The condition L ≤ Min(Q, N) must be
satisfied since Q snapshots of dimension N can be represented
by a subspace of dimension less than or equal to Min(Q, N).
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III. PROPOSED ALGORITHM

first adaptive beamformer w1 in the sequence is chosen
ide maximum SINR for the integrated sample covari-
atrix R1 in accordance with the minimum variance

onless response (MVDR) criterion. This weight vector
n by w1 = [vH(θ)R−1

1 v(θ)]−1R−1
1 v(θ) and used to

rm the array snapshots x(t) received in the first batch
test range cell; y(t) = wH

1 x(t) for t = 0, . . . , Q − 1.
void the coherence “discontinuity” across the batches
t prohibiting the adaptive weight vector to change from
o-batch, the second weight vector w2 is formed in
ner that is dependent on the first w1 such that the
aneous change in antenna pattern is constrained to be
onal to the clutter subspace in the second batch. Stated

atically, the key idea of the proposed algorithm is to
approximate the condition (w2 − w1)HA2 = 0, as

rmits w2 to change from w1 for interference rejection
es while at the same time regulating this change such
s not experienced by the clutter c(t) = A2p(t) received
second batch.
clutter subspace in each batch is not observable because
ontains interference and noise. However, the adaptive

1 is still effective for interference removal in the
pulses of the second batch. If necessary, this can

ured by extending the covariance matrix estimate of
(Q + L)−1

∑Q+L−1
t=0 R̂(t) to include the first L pulses

nd batch. Applying this filter to the first L snapshots
second batch yields wH

1 x(t) ≈ g(t) + wH
1 c(t) for

, . . . , Q + L − 1, where the residual interference-plus-
ontribution at the beamformer output is assumed to

ligible compared with the unrejected clutter. Using the
rgument, wH

2 x(t) ≈ g(t)+wH
2 c(t) for t = Q, . . . , Q+

ince both weight vectors have unity gain response to the
signal. If the second adaptive filter is made to satisfy L
data-driven constraints defined by wH

2 x(t) = wH
1 x(t)

Q, . . . , Q + L − 1, then to a good approximation, the
contribution at the output of the second filter is as if
beamformed by the first filter (i.e. wH

2 c(t) ≈ wH
1 c(t)

oximated for t = Q, . . . , Q + L − 1) even though the
ters may be quite different (w1 �= w2), as required for
e interference rejection.

he L clutter snapshots c(t) = A2p(t) at t = Q, . . . , Q+
re linearly independent, they collectively span the col-
ace of the matrix A2. Consequently, the L data-driven
ints imposed on w2 encourage the relative change in
a pattern to be orthogonal to the clutter subspace (w2−

2 ≈ 0. This condition carries with it the implication
clutter contribution at the output of the second filter is

were beamformed by the first filter over the whole of the
batch t = Q, . . . , 2Q−1 despite the use of only L data-
constraints. By defining C2 = [v(θ),x(Q), . . . ,x(Q +
]H and f2 = [1,xH(Q)w1, . . . ,xH(Q + L − 1)w1]T

second batch, w2 is synthesised according to (10).

min
w2

wH
2 R2w2 subject to C2w2 = f2 (10)



This is the linearly constrained minimum variance (LCMV)
optimisation problem which has the following solution [25].

w2 = R−1
2 C2[CH

2 R−1
2 C2]−1f2 (11)

The remaining batches comprising the CPI are processed in
similar fashion by iterating with respect to m = 2, . . . , M
such that the mth weight vector wm is computed as,

wm = R−1
m Cm[CH

mR−1
m Cm]−1fm (12)

for Cm = [v(θ),x(Q(m − 1)), . . . ,x(Q(m − 1) + L − 1)]H

and fm = [1,xH(Q(m− 1))wm−1, . . . ,xH(Q(m− 1) + L−
1)wm−1]T . That is, the iterations are continued until the whole
CPI is processed. Note that the proposed algorithm is iterative
in the sense that the MVDR weight vector w1 initialises the
sequence at m = 1 and the weights for batches m = 2, . . . , M
are computed using the known weights from the previous step.

The adopted first-order clutter model allows the proposed
algorithm to update the weight vector in non-overlapping
batches whose length is primarily determined by the degree
of interference spatial non-stationarity. This is different to
the SC approach, where the adaptive filter is re-adjusted
in “sliding window” fashion every PRI (irrespective of the
interference characteristics) in an attempt to protect the AR
clutter Doppler spectrum properties. The new philosophy not
only provides robustness against the accumulation of weight
vector estimation errors over the CPI, but also dramatically
reduces the number of matrix inversions required and hence
the computation load. For example, if P = 256, L = 3
and M = 16, the proposed method reduces the number
of N × N sample covariance matrix inversions by a factor
F = P−L

M ≈ 16 which yields appreciable computational
benefits for enabling real-time implementation.

IV. EXPERIMENTAL RESULTS

Experimental data for this study was collected using the
Iluka HFSW radar, located near Darwin in far north tropical
Australia. The radar is bistatic with a high power (1-10 kW)
transmit site at Stingray Head (65 km south-west of Darwin)
and a lower power (100 W) site at Lee Point (10 km north-
east of Darwin). The receiving system at Gunn Point (30 km
North-East of Darwin) is based on a 500 m long ULA of 32
vertical monopoles, each antenna element is connected to a
HF receiver and two dummy elements are added at either end
of the array to reduce the effects of mutual coupling.

Each CPI is 32 seconds long and consists of P = 256 linear
frequency modulated continuous waveform (FMCW) pulses
or sweeps emitted with centre frequency fc = 7.719 MHz,
bandwidth B = 50 kHz and pulse repetition frequency (PRF)
fp = 8 Hz. The analysis is based on a ULA of N = 20 well-
calibrated receivers, the full array could not be used because
of some poor receivers that produced unreliable output. A
total of 60 range cells were retained after receiver mixing
and filtering, the first 12 clutter-free range cells providing the
secondary snapshots for training the adaptive beamformers.
The interference background was unknown and possibly arose
due to a multiplicity of man-made and natural sources.
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g Q = 16 PRI and M = 16 batches (i.e. update interval
conds), the SMI-MVDR beamformer was formed using
0 range cells per PRI (KQ = 160 = 8N ) and applied
er-free range cell 12 to investigate interference rejection
ranges. Figure 1 compares the interference-plus-noise
r spectra processed by the conventional beamfomer
ing taper) and the time-varying SMI-MVDR adaptive
rmer with no data-driven constraints. Although both
rmers are normalised to unit gain in the look direction,
e-varying adaptive beamformer is seen to improve

rence rejection by 15-20 dB across Doppler space.
re 2 shows the application of the same weights to
rm range cell 16 which additionally contains clutter
real target (aircraft echo) in the vicinity of Doppler
. Although the time-varying SMI-MVDR beamformer
ely rejects interference, it severely degrades target

on because the changing antenna patterns destroy the
al coherence of the clutter (particularly the first-order
) which smear across Doppler space and totally obscure
et echo.

posed Algorithm with Data-Driven Constraints

same data was processed by the proposed adaptive
rmer using L = 1, 2 data-driven constraints. Figure 3
that L = 1 performs very poorly, a choice of L = 2
the target slightly more distinguishable but severely

s the clutter Doppler spectrum compared with the
tional beamformer output. It is evident from Figure 4
e use of L = 3 data-driven constraints improves the
of a real target by approximately 20 dB relative to the
tional beamformer with no noticeable degradation in
tter visibility. In other words, this time-sequence of
e weight vectors is felt by the interference but remains
ely “invisible” to the clutter.
e ideal synthetic targets were injected in Doppler

3, 112 and 218 at test range cell 33 to compare the
ed adaptive beamformer with the steady-state or “fixed”
VDR beamformer trained on the same K = 10 range

ut over the whole CPI (i.e. Q = 256 PRI). Figure 5
that while both approaches can detect strong signals,

in the noise (bin 53) or near the clutter (bin 112), only
posed method is capable of detecting the weaker high
y target (bin 218).

parison with Stochastic Constraints Method

re 6 compares the performance of the proposed adaptive
rmer with L = 3 data-driven constraints against the

thod [14] based on a third order AR clutter model. The
is robust and produces sharper Bragg lines that enable
velocity target near the right Bragg line (bin 112) to
cted. The large number of updates in the SC method
in a significant accumulation of estimation errors that
y widens the Bragg lines, but also smears clutter energy
her regions of Doppler space, making the weak high
y target (bin 218) more difficult to detect.



Apart from the relative improvement in performance, the
proposed adaptive beamfomer is about three times faster to
compute than the SC method (timing tests run on an Alpha
(DS20) 500 MHz computer). Hence, the proposed algorithm
represents an attractive candidate for real-time implementation
in practical HFSW radar systems.

V. SUMMARY AND CONCLUSION

This paper has presented a robust and computationally
efficient adaptive beamforming algorithm for the cancellation
of spatially non-stationary interference while preserving the
Doppler spectrum characteristics of the dominant (first-order)
clutter returns. The new method updates the weight vector at a
rate determined the degree of interference non-stationarity, this
is in contrast with the SC approach which re-adjusts the weight
vector every PRI regardless of the interference characteristics
in an attempt to protect the AR Doppler spectrum properties
of the clutter (an update rate that is often faster than necessary
for effective HF interference rejection).

Experimental results confirm that the proposed method can
improve the SINR of real targets by 20 dB relative to the
conventional beamformer in a HFSW radar. Apart from the
computational advantage with respect to the SC technique,
the proposed method was found to be more robust against the
accumulation of estimation errors which degrade sub-clutter
visibility. The benefits of the new approach with respect to
previously existing methods have been demonstrated on a
HFSW radar, although it is envisaged that the same technique
can be applied to skywave OTH and other types of radar.
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Fig. 1. Interference-plus-noise Doppler spectra for conventional (Hamming
taper) beamformer and time-varying MVDR adaptive beamformer with no
data-driven constraints.

Fig. 2. Operational radar Doppler spectra for the conventional (Hamming
taper) beamformer and time-varying MVDR adaptive beamformer with no
data-driven constraints.

Fig. 3. Operational radar Doppler spectra for the proposed adaptive
beamformer with L = 1 and L = 2 data-driven constraints.
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